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CURRENT SOLUTIONS & TRADEOFFS
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All solutions hide system errors from end-users, who can access main
instance without interruptions even in the presence of faults.

* Educated Guess
** In Application Performance 4



WEB/INTERACTIVE APPLICATIONS -
AGNOSTIC FAULT TOLERANT
APPROACHES

Active/Passive (A/P) vs Active/Active (A/A)



TRADITIONAL CHECKPOINT MODE (A/P)
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COLO - COARSE GRAIN LOCK STEPPING* (A/A)
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* Dong, YaoZu, etal. "COLO: COarse-grained LOck-stepping virtual machines for non-stop service” — ACM Symposium on
Cloud Computing (2013)




RESOURCE TRADEOFFS: COLO & CHECKPOINT
MODE
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PROBLEM

+ Lower latency + Less CPU usage
- Workload can increase - Greater latency
synchronization frequency: = - More network usage

more network usage
- More CPU usage



IDEA: HYBRID APPROACH

e Main idea is to control how long we stay in COLO or
checkpoint modes based on the frequency of
checkpoints;

 This frequency indicates workload aspects to decrease
VM Downtime Ratio, i.e., the overall amount of time the
VM is paused due to a checkpoint;
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HYBRID THRESHOLD MODE DESIGN

> ©

If COLO is good (on
average), we decrease
how long we will spend in
Checkpoint mode by a
BETA factor (for the next
switching)

Fixed(t) > o

Downtime_ Ratio (t) <
Threshold

-

If COLO is bad (on
average), we increase
how long we will spend in
checkpoint mode for the
next switching by an
ALPHA factor (for the next
switching)
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HYBRID PROPORTIONAL-INTEGRAL
CONTROLLER DESIGN

Mode
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The PI-controller accepts a user-defined set-point (sp, system’s aim) and eps (checkpoints per

second) as inputs, both used to calculate p, the controller’s mode switcher.
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IMPLEMENTATION W/ OPENSTACK

OpenStack
(nova-scheduler)

OpenStack
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EVALUATION

- Three real applications were used in order to evaluate the
proposed hybrid approaches:

o RUBIS online auction benchmark;
= Database (I/0);
= Very deterministic;
o BugZilla Tracking System;
» Multi-threaded Bug filing application;
o Video Streaming.
= Heavily-threaded application;
= Highly non-deterministic;
« All applications run 10 times, 30 minutes in each mode:
o Checkpoint, COLO, Threshold and Controlled (Hybrid).
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Downtime Ratio
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Downtime Ratio
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Downtime Ratio
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DISCUSSION

« Average latency and throughput are where tradeoffs can be seen

* Our solution has not under-performed in any scenario, only by overheads for
CPU and Network usages

 In particular, unpredictable behavior may be caused by many different factors:

o Timestamp, unique-IDs per request, multi-threating...
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CONCLUSIONS

e Controller follows workload behavior and decreases Downtime Ratios for each
VM, without impact in application performance

* Machine/Reinforcement Learning could be used to learn workload

o Potential to speed up the mode learning/convergence process;

o Additional metrics for decision making policy (such as Performance)
« The adaptation ability is relevant in many use-cases

o Operators offer infrastructure without asking what users will run.
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