HYBRID ADAPTIVE CHECKPOINTING FOR
VIRTUAL MACHINE FAULT TOLERANCE

Abel Souza (Umea University)
Alessandro Papadopoulos (Malardalen University)
Luis Tomas (Red Hat)

David Gilbert (Red Hat)

Johan Tordsson (Umea University)

abel.souza@umu.se

UMEA UNIVERSITY




INTRODUCTION




MOTIVATION




CURRENT SOLUTIONS & TRADEOFFS

Q) 7 Cheagrchea-r. (i) [ VAl
(geolué.fe ut g:,r R
heag ¢ hea
-_
(1) Application _ $$S o= 0
(ii)  Hardware + $$S s
(ii1) Agnostic (VMs) + $ 2%

All solutions hide system errors from end-users, who can access main
instance without interruptions even in the presence of faults.

* Educated Guess
** In Application Performance 4



WEB/INTERACTIVE APPLICATIONS -
AGNOSTIC FAULT TOLERANT
APPROACHES

Active/Passive (A/P) vs Active/Active (A/A)



TRADITIONAL CHECKPOINT MODE (A/P)

Release Request
Responses Common

/Réiéase Request Resource Usage [%]

Responses
/ \ \ [PVM
/ N . Y i _
/I Fixed Length —| \ k— Fixed Length —| RO M N
/ 1 " 1
}I/' Pause1 |+—> Run Pause2 | «—» *0 7 X O : O ’

4

3 . ‘
& _. A BT TTTTTTTT T
Requests ml § ﬂl g
| |
_ Hold G Hold ]

-l

Time




COLO - COARSE GRAIN LOCK STEPPING* (A/A)

Common
Resource Usage [% ]

PVM
[¢— Length —»|
le}) \ /MEMY /NET™N
Pause Run | —- )| N )
‘\; O N ,"J ‘~/O y . AV O

Requests / / /

* Dong, YaoZu, etal. "COLO: COarse-grained LOck-stepping virtual machines for non-stop service” — ACM Symposium on
Cloud Computing (2013)




RESOURCE TRADEOFFS: COLO & CHECKPOINT
MODE

6 14000
12
5 000
10000
>
£
8000 2
g 3
=] c
S5 3 s
& = = secondary CPU
< —
6000 § primary CPU
‘s sync channel bandwidth
2 £
4000 2
P
0
! 2000
0 i 0
O v D v O L O D O H O M
VT W S AT QY NN N N

Time (seconds)



PROBLEM

+ Lower latency + Less CPU usage
- Workload can increase - Greater latency
synchronization frequency: = - More network usage

more network usage
- More CPU usage



IDEA: HYBRID APPROACH

e Main idea is to control how long we stay in COLO or
checkpoint modes based on the frequency of
checkpoints;

 This frequency indicates workload aspects to decrease
VM Downtime Ratio, i.e., the overall amount of time the
VM is paused due to a checkpoint;

Time Not running
VM

Avg(Downtime)
Avg(Uptime)

\’ Time Running
VM

Downtime Ratio =

10



r

Requests

PVM
CPU

» Responses

Comparison

SVM
CPU

HYBRID APPROACH

Run

Run

COLO

Run

Checkpoint

Run

COLO

Run

Run

Time

Y

11



HYBRID THRESHOLD MODE DESIGN

> ©

If COLO is good (on
average), we decrease
how long we will spend in
Checkpoint mode by a
BETA factor (for the next
switching)

Fixed(t) > o

Downtime_ Ratio (t) <
Threshold

-

If COLO is bad (on
average), we increase
how long we will spend in
checkpoint mode for the
next switching by an
ALPHA factor (for the next
switching)

12



HYBRID PROPORTIONAL-INTEGRAL
CONTROLLER DESIGN

Mode
Switcher
p

PI >

T cps
4
Checkpoints/s

The PI-controller accepts a user-defined set-point (sp, system’s aim) and eps (checkpoints per

second) as inputs, both used to calculate p, the controller’s mode switcher.

13



IMPLEMENTATION W/ OPENSTACK

OpenStack
(nova-scheduler)

OpenStack
(nova-conductor)

?
er\oﬂ

ﬁVM

-
-
-
-
-
t&‘

1= (-

Network
\ Buffering & Comparison

(Host1) __.---==-"""7777" >

OpenStack
(nova-compute)

~

LibVirt

| QEMU
Hybrid Mechanism

T

~

SVM
(Host 2) OpenStack
__________________ y  (nova-compute)
i LibVirt
I — I <o ° o> QEMU

7

\\(VV\IGH) wea.s wiodyoay,

Buffering

J

ure

14



EVALUATION

- Three real applications were used in order to evaluate the
proposed hybrid approaches:

o RUBIS online auction benchmark;
= Database (I/0);
= Very deterministic;
o BugZilla Tracking System;
» Multi-threaded Bug filing application;
o Video Streaming.
= Heavily-threaded application;
= Highly non-deterministic;
« All applications run 10 times, 30 minutes in each mode:
o Checkpoint, COLO, Threshold and Controlled (Hybrid).

15



Downtime Ratio

RESULTS - SYNTHETIC WORKLOAD

— Checkpoint --- COLO -~ Threshold Hybrid
| - 8- ""‘l
- IE ] | |
> § . i
= "
Q 7 |
46-3' S 4 - LK\ ] .
_ - N \'.-.-‘-"I * ‘..\‘-.',-1.; .-',—u -
I | T e g . — —
0 500 1000 1500 0 500 1000 1500
Time [s] Time [s]

16




Downtime Ratio

RESULTS - BUGZILLA WORKLOAD

—— Checkpoint - -- COLO

1.5 20

1.0

0.0 0.5

© we o 3 ..L..
” verl Aaa ot
| | |
0 500 1000 1500
Time [s]

----- Threshold Hybrid
? o

E 3-

0 g ]

E s

= g8

o <

&N

e g

C &

Q o

g §-

m 0 1000 2000 3000 4000

Request #

17



Downtime Ratio

00 05 10 15 20

RESULTS - VIDEO STREAMING WORKLOAD

—— Checkpoint - -- COLO

—l\’ ‘\ \/\\)//“\f,(\; I\I \:

0 5<|)o 1o|oo 15|oo
Time [s]

Latency [ms]

8 9 10 11 12 13 14 15

Threshold Hybrid

200 400 600 800

Frame [s]

18




DISCUSSION

« Average latency and throughput are where tradeoffs can be seen

* Our solution has not under-performed in any scenario, only by overheads for
CPU and Network usages

 In particular, unpredictable behavior may be caused by many different factors:

o Timestamp, unique-IDs per request, multi-threating...

19



CONCLUSIONS

e Controller follows workload behavior and decreases Downtime Ratios for each
VM, without impact in application performance

* Machine/Reinforcement Learning could be used to learn workload

o Potential to speed up the mode learning/convergence process;

o Additional metrics for decision making policy (such as Performance)
« The adaptation ability is relevant in many use-cases

o Operators offer infrastructure without asking what users will run.

20



www.orbitproject.eu

URBIT

HYBRID ADAPTIVE CHECKPOINTING FOR
VIRTUAL MACHINE FAULT TOLERANCE

Abel Souza (Umea University, Sweden)
Alessandro Papadopoulos (Malardalen University, Sweden)
Luis Tomas (Red Hat, Spain)

David Gilbert (Red Hat, U.K.)

Johan Tordsson (Umea University, Sweden)

abel.souza@umu.se

UMEA UNIVERSITY

The research leading to these results has received funding from the EC Seventh Framework Programme FP7/2007-2011
under grant agreement n® 609828




