
E-HPC: A Library for Elastic Resource Management in HPC
Environments

William Fox+*, Devarshi Ghoshal, Abel Souza−*, Gonzalo P. Rodrigo, Lavanya Ramakrishnan
Lawrence Berkeley National Lab, 94720, Berkeley, California

+School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia
−Dept. Computing Science, Umeå University, SE-901 87, Umeå, Sweden

wfox7@gatech.edu,dghoshal@lbl.gov,abel.souza@umu.se,gprodrigoalvarez@lbl.gov,lramakrishnan@lbl.gov

ABSTRACT
Next-generation data-intensive scientific workflows need to sup-
port streaming and real-time applications with dynamic resource
needs on high performance computing (HPC) platforms. The static
resource allocation model on current HPC systems that was de-
signed for monolithic MPI applications is insufficient to support
the elastic resource needs of current and future workflows. In this
paper, we discuss the design, implementation and evaluation of
Elastic-HPC (E-HPC), an elastic framework for managing resources
for scientific workflows on current HPC systems. E-HPC considers
a resource slot for a workflow as an elastic window that might
map to different physical resources over the duration of a workflow.
Our framework uses checkpoint-restart as the underlying mech-
anism to migrate workflow execution across the dynamic window
of resources. E-HPC provides the foundation necessary to enable
dynamic resource allocation of HPC resources that are needed for
streaming and real-time workflows. E-HPC has negligible overhead
beyond the cost of checkpointing. Additionally, E-HPC results in
decreased turnaround time of workflows compared to traditional
model of resource allocation for workflows, where resources are al-
located per stage of the workflow. Our evaluation shows that E-HPC
improves core hour utilization for common workflow resource use
patterns and provides an effective framework for elastic expansion
of resources for applications with dynamic resource needs.

CCS CONCEPTS
• General and reference → Design; Evaluation;

KEYWORDS
Elastic resource management, scientific workflows, HPC systems

ACM Reference Format:
William Fox+*, Devarshi Ghoshal, Abel Souza−*, Gonzalo P. Rodrigo, Lavanya
Ramakrishnan. 2017. E-HPC: A Library for Elastic Resource Management in
HPC Environments. In WORKS’17: WORKS’17: 12th Workshop on Workflows
in Support of Large-Scale Science, November 12–17, 2017, Denver, CO, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3150994.3150996

* Work performed at Lawrence Berkeley National Lab.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
WORKS’17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-5129-4/17/11. . . $15.00
https://doi.org/10.1145/3150994.3150996

1 INTRODUCTION
Today, scientific workflows with experiment data are increasingly
processed on High Performance Computing (HPC) systems. Next-
generation scientific workflows have to support streaming data
and real-time constraints with varying resource needs. Today, HPC
platforms are primarily designed to support monolithic MPI applic-
ations and provide a static resource allocation model i.e., a resource
allocation is fixed for the duration of the entire job. The static re-
source allocation model presents challenges to scientific workflows
where every stage of the workflow may have different resource
needs. Current allocation methods attempt to either split the work-
flow and incur queue wait times for each stage, or request one big
allocation resulting in wastage of resources.

Figure 1: Comparison of traditional and E-HPCmanaged resource
allocation for scientific workflows in HPC: a) shows the static alloc-
ation of resources for the entire duration of theworkflow execution.
b) shows the dynamic allocation where resources are requested as
per the needs of a particular stage.

Current methods result in loss of efficiency or utilization, and the
problems will only be exacerbated with next-generation dynamic
workflows. We need a dynamic resource management model that
considers resources to be elastic that can grow and shrink based
on requirements of a scientific workflow. Resource elasticity has
been extensively studied in the context of clouds [8, 23, 30]. How-
ever, unlike HPC environments, cloud resources are not managed
through batch schedulers. Elastic resource management in HPC
environments has also been explored for specific applications [9],
but general methods are still not available.

In this paper, we presentElastic-HPC (E-HPC), an elastic frame-
work for managing resources for scientific workflows in an HPC
environment. It provides dynamic, adaptable resource management
and supports workflow execution. E-HPC is capable of growing and
shrinking the allocated resources for a workflow during execution.

https://doi.org/10.1145/3150994.3150996
https://doi.org/10.1145/3150994.3150996
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3150994.3150996&domain=pdf&date_stamp=2017-11-12

WORKS’17, November 12–17, 2017, Denver, CO, USA W. Fox et al.

It considers the resource slot to be an elastic window that maps
to different physical resources based on availability. E-HPC uses
checkpoint-restart mechanism to save and relaunch workflows on
different resources when needed. Users can either submit a work-
flow description to E-HPC, or instrument existing workflows to
use E-HPC to manage elastic resources. Thus, E-HPC can fit into
current software ecosystems available in scientific collaboration or
at HPC facilities. In this paper, we make two contributions.

• We design and implement an elastic framework to manage
resources for scientific workflows in HPC environments.
• We evaluate the performance of the E-HPC framework across
two HPC systems, and several synthetic and real scientific
workflows to understand the performance of workflows and
overheads in E-HPC.

The rest of the paper is organized as follows. In section 2, we
describe background onworkflows and current methods of resource
management. We describe the design and implementation of E-HPC
framework in Section 3 and results of our evaluation in Section 4.
We present related work in Section 5 and conclusions in Section 6.

2 BACKGROUND
Figure 1a shows an example of the resource allocation while run-
ning workflows on HPC resources in the absence of E-HPC. Tradi-
tionally, workflows are executed as a single batch job, where a set of
HPC resources are allocated for the entire duration of the workflow.
Workflows with different job resource requirements often end up
wasting resources. Alternatively, users have to manually manage
the different stages in the workflow by packaging them as separate
jobs. In contrast, E-HPC provides elasticity for running workflows
on HPC resources. Figure 1b shows the resource allocationusing
E-HPC. E-HPC allocates only as many resources as required by
a specific stage of the workflow. In case of asynchronous parallel
tasks, E-HPC is able to also grow or shrink during run-time. E-
HPC manages elasticity during workflow execution by dynamically
resizing the allocated resources using checkpoint and restart.

2.1 Scientific Workflow Execution
Workflows are used to describe and execute tasks according to
their data and control dependencies. Today, HPC workflows are
implemented through ad-hoc scripts and workflow tools [5, 36]
with limited support for elastic resource management. Scientific
workflows in HPC are run in static allocations as chained jobs (jobs
with dependencies) or pilot jobs (the entire workflow contained in
a job) [27]. Chained workflows have very long and unpredictable
turnaround times because their critical path includes intermediate
wait times. Pilot job workflows, i.e., the traditional method in Fig-
ure 1a, typically has shorter turnaround times because there is no
wait time between jobs. However, pilot jobs allocate the maximum
resource set required by any task within the workflow, even if
other tasks require significantly less resources, leading to resource
wastage. E-HPC facilitates workflows to consider resource slots
as dynamic elastic resources. E-HPC is able to eliminate resource
wastage and job exceeding its allocation by dynamically adapting a
workflow’s resource allocation to its tasks resource requirements.

2.2 Elasticity and recovery use cases
Scientific workflows require elasticity and recovery. However, there
are different requirements on how and when they occur. In this
section, we outline these requirements in the context of E-HPC.
Scaling Between and During Stage Execution. Workflows are
composed of stages with fixed but different resource requirements.
or workflows where resource requirements are discovered during
execution [14]. E-HPC is capable of scaling workflow resources
between and during stages execution that support both cases.
Elasticity Triggers. Resource requirements of a workflow, might
be known beforehand, discovered during its execution, or connected
to external events (e.g., execution deadline) [38]. E-HPC supports
all three cases. For known resource requirements, users may define
an execution plan that will guide resource scaling operations (Sec-
tion 3.1). Users can express new resource needs for workflows using
the E-HPCAPI that will trigger a scaling process to support changes
in resource requirements. The API can also be used from outside
the workflow for externally driven events.
Recovery from Failures. Scientific workflows are composed of
multiple long running stages and work is lost in case of failure.
E-HPC transparently performs periodic checkpointing and recov-
ery of the workflow. E-HPC is capable of successfully managing
workflows where runtime might be unknown in advance [22] or
workflow failure might occur because of exceeding job boundaries
on batch systems. In this case, using E-HPC, when a workflow job
reaches its time limit, it can be checkpointed and restarted.
2.3 Tigres Workflow Library
We use Tigres, a workflow library to evaluate E-HPC. Tigres [10]
is a programming library that allows users to compose large-scale
scientific workflows and execute them onHPC environments.Work-
flows can be composed from existing executable scripts and binaries
or new Python code. Tigres workflows are Python programs that
are submitted as jobs to the batch scheduler directly. It manages
workflow execution from within the job scripts, where resources
are managed through different batch schedulers.

Tigres provides “templates” that enable scientists to easily com-
pose, run, and manage computational tasks as workflows. These
templates define common computation patterns used in processing
and analyzing data and running scientific simulations. Currently,
Tigres supports four basic templates to model serial (sequence), and
concurrent (parallel, split and merge) execution. During serial exe-
cution, although Tigres launches a task on a single compute node, it
can expand to other compute nodes using MPI or other distributed
libraries. In concurrent stages, Tigres manages task parallelism and
employs SSH to deploy workers on each available compute node.
E-HPC tracks and checkpoints distributed processes in applications,
such as Tigres, that rely on SSH and MPI to support elasticity.
2.4 DMTCP
DMTCP (Distributed MultiThreaded Checkpointing) is a trans-
parent user-level checkpoint restart library for distributed applic-
ations [26] used in E-HPC. DMTCP is transparent because no
changes are required to the managed application or the underly-
ing operating system. The DMTCP managed application state is
captured by monitoring system calls, processes, network commu-
nication, and open files. Also, DMTCP supports distributed applica-
tions by intercepting the creation of new local or remote (SSH or

E-HPC: A Library for Elastic Resource Management in HPC Environments WORKS’17, November 12–17, 2017, Denver, CO, USA

MPI) process. Instances of DMTCP in these new processes connect
through sockets to a central daemon that coordinates the distributed
checkpointing and restart operations.

DMTCP freezes the execution of all the processes of the ap-
plication at checkpoint time. Then, for each process, a copy of its
memory allocation, network, and I/O states are dumped to the file
system. During restart, a process is created for every process check-
pointed and its memory and state are restored from the copy in
the file system. E-HPC takes advantage of DMTCP to shrink or en-
large resource allocations of an HPC workflow. DMTCP will restart
an application on different hosts, even if their number differs, as
long as the hosts are homogeneous (typical in HPC systems) and
a mapping of processes over resources is provided (calculated by
E-HPC).

3 DESIGN AND IMPLEMENTATION

Figure 2: E-HPC architecture. E-HPC has three distinct control
flows – a) startup: Users submit a workflow through E-HPC. E-
HPC coordinator generates job scripts to request resources and run
the workflow. Once the resources are allocated to the job through
the batch scheduler, E-HPC launches the workflow executable via
DMTCP. b) resource management: E-HPC tracker monitors the job
execution and the states of the workflow. When the workflow is-
sues an expand or a contract request through the E-HPC API, the
tracker sends a checkpoint/kill signal to DMTCP. c) termination/-
completion: Once the job is killed, E-HPC coordinator resubmits an-
other job script with a modified resource requirement. If the job
completes successfully, E-HPC tracker notifies the coordinator.

Figure 2 shows the architecture of E-HPC. E-HPC has three main
components - E-HPC Application Programming Interface (API),
E-HPC Coordinator, and E-HPC Tracker. The E-HPC API provides
the elastic functions that allows users to manage their resources
dynamically. The E-HPC Coordinator accepts traditional user work-
flows and interacts with the E-HPC API to provide the elasticity
needs. The E-HPC tracker tracks the execution of the workflow on
the resources and manages the book keeping associated with the
elastic resources.

A user submits a workflow by employing E-HPC command-line
utilities on the HPC system. Next, E-HPC starts its coordinator, and
generates and submits a batch job script that drives the workflow
execution. Once the batch scheduler allocates resources to the job,
the script executes the workflow and initiates services needed in
the compute nodes to support elasticity. These services include
a DMTCP controller, responsible for managing low level distrib-
uted checkpoint-restart operations, and an E-HPC tracker, which

workflow:
command: python stage1.py
stage1:

nodes: 4
ppn: 1
walltime: 00:15:00

stage2:
nodes: 1
walltime: 00:30:00

Figure 3:Workflow descriptions contain execution commands and
resource requirements for each stage.

monitors the different states of the workflow. In this context, if the
workflow requires resource scaling, it employs the E-HPC API to
issue an elastic request for increasing or decreasing the number of
resources allocated to the job. The E-HPC API relays the request
to the E-HPC tracker which issues checkpoint and kill requests
to DMTCP. After the checkpoint is complete, and all the tasks are
killed, E-HPC tracker informs the coordinator of the new resource
requirements and ends the current workflow job. E-HPC coordin-
ator generates a new job script that invokes DMTCP to restart the
workflow using the checkpoint.
3.1 User Interface
E-HPC is designed as a library and users can interact with it in
two different ways – a) plan-driven, or b) event-driven. In the
plan-driven method, the user provides the elasticity plan, whereas
in the event-driven method, external and internal events in the
application trigger elasticity. Figure 3 provides an example of an
elasticity plan that specifies the stages and resource requests for a
workflow. The elasticity plan specifies the stages of the workflow
and the associated resource requests. The resource requests in the
plan specify the amount of resources and the duration for which
the resources are required. The plan-driven method is minimally
invasive, and requires no change to existing application programs
or scripts.

The event-driven method allows users to modify their scripts
using the E-HPC API, which induces elasticity from within the
application program. This allows users to scale up or down con-
ditionally based on an event in application characteristics and on
resource requirements. We describe the API in detail in Section 3.5.

In addition to the two different ways to interact with E-HPC, a
user can also request elastic resources in two different ways – i)
stage elasticity, where a user can opt to grow or shrink resources
between the stages of a workflow, or ii) runtime elasticity, where
a user can request to change resources at any time during the
execution. Stage elasticity is useful when different stages of the
workflow have pre-defined, known resource requirements. On the

Pending

CompletedFailed

Checkpointing

Running

resources change

failre
st

a
rt

success

resources
available

ex
pand/contract

checkpoint

no resource ch

an
ge

Figure 4: State transitions of a workflow in E-HPC.

WORKS’17, November 12–17, 2017, Denver, CO, USA W. Fox et al.

other hand, runtime elasticity is useful when resource requirements
can be changed due to external factors (e.g., available resources,
system failures). However, runtime elasticity may not be suitable
for all applications. For example, applications that are checkpointed
in the middle of an I/O operation may end up in an unknown or
unpredictable state.

3.2 Workflow States
Figure 4 shows different states a workflow may go through when
using E-HPC. A workflow is at first in a pending state and is put
in the queue that the E-HPC coordinator manages internally. Once
the required resources are allocated for the job, it moves to the
running state, where the tasks are distributed and executed on HPC
resources. If the resource requirements change during the execution
of the workflow, or the execution terminates due to failure, the
workflow state moves to a checkpoint state. The workflow moves
from the checkpoint state to the pending state, waiting for the new
set of resources for the restart to happen. If the workflow execution
terminates due to a failure, E-HPC restarts the failed workflow
using the checkpoint. The workflow transitions to completed state
when all the tasks of a workflow are executed successfully.

3.3 E-HPC Coordinator
E-HPC coordinator generates job scripts for running workflows
on HPC resources, and coordinates the execution and dynamic re-
source allocation for workflows. When a user submits a workflow
to E-HPC, it starts the coordinator on the login node of an HPC
system. Users specify the initial resources required to execute the
workflow and E-HPC coordinator generates a job script for run-
ning the workflow on HPC resources. The resource requirements
are transformed into batch scheduler directives in the job script.
The job script acts as a wrapper for launching the workflow tasks
through DMTCP. E-HPC coordinator sets up all the environment
variables and directory paths for enabling distributed checkpoint-
ing through DMTCP. DMTCP requires a centralized coordinator
for checkpointing and restarting distributed tasks, which the job
script launches on a compute node.

The state of the workflow tasks and the changes in resources
are shared with E-HPC coordinator through the shared file system.
E-HPC coordinator uses job status and resource requirements to
determine the elasticity of workflows. If the job fails, terminates
before completion, or the resource requirements change, E-HPC
coordinator checkpoints the workflow and generates a restart com-
mand to launch the unfinished workflow through a job script. The
job script also sets up the required commands to update the host
list, once new resources are allocated to the job.

3.4 E-HPC Tracker
The job script generated by E-HPC coordinator starts a tracker
on a compute node. Once the workflow job begins to execute, the
tracker monitors the job progress. The workflow requests a change
in resources through the E-HPC API. The API triggers the E-HPC
tracker to checkpoint the workflow and terminate execution. In
cases where the workflow is specified through a workflow descrip-
tion, E-HPC tracker checkpoints the execution prior to executing
the next stage in the workflow. The workflow tasks run across mul-
tiple nodes, and E-HPC tracker waits and monitors all the tasks to
be correctly checkpointed and terminated before updating the job

state. Once all the tasks of the workflow have terminated, E-HPC
tracker updates the resource plan to describe the number of re-
sources required for the rest of the workflow and the expected time
of execution. If there is no change in the resource requirements of
a workflow, E-HPC tracker simply monitors and checkpoints the
tasks as the execution progresses.

During a restart, E-HPC tracker reads the updated host file and
sends a signal to the workflow in execution. It sends an updated
host list along with the workflow so that new tasks can be launched
on a different set of resources. Every workflow needs to be able to
trap the signal to notify changes to an executing workflow. In our
current implementation, E-HPC sends a SIGUSR1 signal to share
the updated information about the hosts. This provides a generic
interface for any workflow or application to dynamically scale on
a different set of HPC resources based on the requirements.
3.5 E-HPC API
E-HPC provides command-line utilities and an API to manage
elastic workflows on HPC resources (Table 1). Users submit a work-
flow through the command-line as: ehpc start <workflow-script>.
The start command triggers the launch of a workflow through the
E-HPC coordinator. It generates job submission scripts and submits
them through a batch scheduler. It ensures that a workflow script
is launched through DMTCP and hence, is checkpointed and can
be restarted as needed.

Interface Description
init registers a workflow to E-HPC and returns a

workflow-id
expand grows the resource allocation to the amount spe-

cified
contract shrinks the resource allocation by the amount spe-

cified
done notifies E-HPC about workflow completion

Table 1: E-HPC API provides four interfaces to transform a
simple workflow into an elastic workflow.

Users can use the E-HPC API to add elastic calls in a workflow
script to grow or shrink resources as the workflow executes. The
E-HPC API provides four simple functions to manage elasticity
in a workflow. The init function registers a workflow through
E-HPC coordinator and returns a unique identifier for the work-
flow. The expand function is used to dynamically grow the number
of resources for a workflow in execution. Similarly, the contract
function allows for dynamically shrinking the number of resources
for an executing workflow. Both expand and contract checkpoint,
kill and restart the workflow on a different set of resources based
on the resource requirements of a workflow. Once a workflow com-
pletes execution, allocated resources are released and checkpoint
data is removed using done, which updates the status of the work-
flow to completed. E-HPC also calculates and collects performance
and usage metrics for a workflow.
3.6 Minimizing Queue Wait Time
The default mode of operation in E-HPC is to submit a workflow
job with the new resource allocation request, only after the pre-
vious job has been terminated. This may incur large queue wait
times depending on the current workload of the system. In order to

E-HPC: A Library for Elastic Resource Management in HPC Environments WORKS’17, November 12–17, 2017, Denver, CO, USA

(a) Montage. (b) BLAST. (c) Synthetic.
Figure 5: Workflow graphs, stages are logically combined. Stages are combined together according to workflow resource requirements: sub-
sequent parallel stages are combined together as a single logical stage and sequential stages are combined into a single sequential stage

minimize the queue wait times, E-HPC provides a fast execution
mode, where the next stage of the workflow is submitted to the
job queue, while the execution of the workflow continues in its cur-
rent resource allocation. Once the requested resources are allocated
to the job, the running workflow is signaled to be checkpointed
and killed, and the placeholder job restarts the workflow using the
newly created checkpoint. This eliminates the queue wait time for
applications that can dynamically scale up or down.

Unlike the default E-HPC method, the fast mode requires all
proceeding execution to be checkpoint-safe in order to function
as expected. We define an execution as checkpoint-safe, if there
are no active TCP connections, or I/O operations. In such cases, a
restart may result in data loss or even failure to re-establish the
TCP connections. This is a limitation of the DMTCP library and we
plan to investigate alternative strategies in future to overcome this
limitation.

The efficiency of the fast operation depends on the queue wait
time of the placeholder job, the time required to finish the current
job, and the checkpoint/restart overhead. If a job’s runtime is small,
the overhead of queue wait time and the cost of migrating to new
resources might not justify the use of fast mode.
3.7 Workflow Plug-ins
E-HPC is implemented in Python and generates job scripts to be
run on HPC resources through batch schedulers. It currently sup-
ports Slurm and Torque schedulers. Users specify the resource re-
quirements and E-HPC generates batch scripts with the respective
scheduler directives. Workflow status and resource requirements
are updated through a YAML file on a shared file system. E-HPC is
currently integrated with the Tigres workflow library and can be
used with any Tigres workflow. However, workflow scripts written
in Python can also be transformed into elastic workflows by using
the E-HPC API directly. E-HPC currently uses DMTCP for check-
point restart. However, the architecture of E-HPC is independent of
DMTCP and other checkpoint restart mechanisms might be used.
Thus, E-HPC has been designed such that it can be extended to
work with other batch queue, workflow and checkpoint restart
systems.

4 EVALUATION
In this section, we evaluate the performance and resource usage
of scientific workflows through E-HPC. We compare our results
against running the workflows without E-HPC (i.e., they are sub-
mitted through a single large job – see Figure 1a).

4.1 Systems
We evaluated the impact of elasticity on HPC workflows through
E-HPC on two systems – i) Gordon and ii) Cori. Gordon [37] is a
dedicated XSEDE cluster with 1024 compute nodes. Each compute
node contains two 8-core 2.6 GHz Intel EM64T Xeon E5 (Sandy
Bridge) processors and 64 GB of DDR3 RAM. The file system is
Lustre with a peak I/O bandwidth of 100 GB/s and the resources
are managed by TORQUE. Cori [21] is a Cray XC40 supercomputer
hosted at the National Energy Research Scientific Computing Cen-
ter (NERSC), which has 2388 compute nodes, each with two sockets
and 32-core Intel Xeon "Haswell" processor at 2.3 GHz per socket
and 128 GB DDR4 memory (2133 MHz, four 16 GB DIMMs per
socket). The file system used during job execution is a Lustre file
system with a peak performance of 700 GB/s.
4.2 Workflows
We use two real science workflows (Montage and BLAST) and one
synthetic workflow to evaluate E-HPC (Figure 5). All the workflows
are built using the Tigres templates. The different stages in the
workflows are logically grouped together into parallel and sequen-
tial stages based on the resource requirements at each stage of the
workflow.
Montage [12] is an I/O intensive workload [13] that constructs
a JPEG image from sky survey data formatted as Flexible Image
Transport System (FITS) files [24]. As shown in Figure 5a, Montage
is composed of nine stages, and we logically group them into four
stages – i) 1-Parallel, ii) 2-Sequence, iii) 3-Parallel, and iv) 4-Sequence.
All experimental runs of Montage construct the image for survey
M17 on band j and degree 8.0 from 2mass Atlas images.
BLAST is a memory-intensive workflow that matches DNA se-
quences against a large sequence database (> 6 GB). The workflow
splits an input file (a few KBs) into several small files and then
uses parallel tasks to compare the input against the large sequence
database. The database is loaded in-memory on all the compute
nodes during the parallel stage. Finally, all the outputs from the
parallel stage are merged into a single file. As shown in Figure 5b,
BLAST is composed of three stages. As the first stage runtime is
short, we logically group them into two stages – i) 1-Parallel and
ii) 2-Sequence. BLAST is used to illustrate the resource usage for
an use-case where a parallel stage execution time is substantially
larger than the sequential one.
Synthetic workflow is composed of sequence and a parallel stages
(Figure 5c). Theworkflow iswritten in Python. Thememory-intensive
version of the synthetic workflow consists of tasks that do a large

WORKS’17, November 12–17, 2017, Denver, CO, USA W. Fox et al.

Metric (unit) Description
Stage execution
time(s)

Execution time for a workflow stage

Workflow
runtime(s)

Workflow end time - Workflow start
time

Checkpoint time(s) Time to checkpoint a stage
Restart time(s) Time to restart a workflow stage
Queue time(s) Time a workflow stage waits in queue

prior to execution
Core-hours
used(hrs)

∑
Task execution time * Number of cores

allocated
Table 2: Metrics for evaluation.

0
100
200
300
400
500
600
700
800
900
1000

EHPC EHPC	
Calculated

EHPC	Fast	 EHPC

64 64	to	128	 64	to	128	 128

W
or
kf
lo
w
	R
un

tim
e	
(s
)

CPU	Cores

1-Parallel 1-Parallel-Scaled	(128	cores) 1-Checkpointing Queue	Stage	2

0
2
4
6
8

10
12
14
16
18
20

EHPC EHPC	
Calculated

EHPC	Fast	 EHPC

64 64	to	128	 64	to	128	 128

To
ta
l	C
or
e-
ho

ur
s	(
h)

CPU	Cores
a) b)

Figure 6: Synthetic (Gordon) - effects of dynamic resource scaling
using E-HPC (a) Runtime, (b) Core-hours usage. E-HPC scales from
64 to 128 cores and achieves better performance than running the
workflow over 64 cores.

number of memory allocations for over one billion integers, prior
to calculating the values of their sum and multiplication. The first
stage contains one billion tasks, calculating the sum in sequence,
whereas the second parallel stage contains ten million tasks, cal-
culating the multiplication in parallel. In contrast to the other two
workflows, this workflow is designed to have a longer sequential
stage, followed by a shorter parallel stage. We also use the memory-
intensive version of the synthetic workflow that consists of 10
thousand parallel tasks. Unless otherwise specified, we use the two
stage memory-intensive synthetic workflow for our evaluation, and
use the single stage memory-intensive fully parallel workflow for
measuring E-HPC overheads.

Table 2 lists and summarizes the metrics for our experiments. It
includes workflow runtime, stage execution time, stage checkpoint
and restart times, process kill times, core-hours used and queue
time (inter-stage queue wait time). The runtime of a workflow
is calculated as the time between the execution start of the first
stage and completion of the last stage of the workflow. The core-
hours measured correspond to the resource allocated for the entire
duration, including possibly resources left unused by a workflow.
Wait time values are not included since jobs do not consume core-
hours when they wait. In our evaluation, we use E-HPC’s regular
mode, unless otherwise specified.

4.3 E-HPC Elasticity
Figure 6 shows the benefits of E-HPC for dynamic resource scaling
of an application. In this experiment, we run the synthetic parallel
stage on 64 cores, 128 cores and scaling from 64 to 128 cores and
we use fast mode to minimize the wait times. The fast mode allows

applications to continue making progress while other resources are
requested. In Figure 6, the E-HPC calculated bar is generated by tak-
ing the data from running E-HPC in fast mode and adding the queue
time for the second job. We see that queue times are not substantial
in this case. However, E-HPC in the fast mode provides even more
significant benefits in cases where queue times are significant.

Figure 6a shows that fast mode results in around 30 percent
improvement in workflow runtime as compared to maintaining the
resources at 64 cores. The application is able to benefit from the
added cores and complete the application sooner. Figure 6b shows
corresponding core-hours expenditure for each run.

4.4 Effect of Stage Elasticity
The stage elasticity in E-HPC allows workflows to request resource
changes between the stages of a workflow (as described in Sec-
tion 3.1). In this section, we present the results of using stage elasti-
city in E-HPC for different workflows.

In our evaluation, we measure E-HPC performance using work-
flow runtime and allocated core-hours. Values observed in each
experiment are presented in Figures 7 to 9. Each bar in the figure
presents the average value (with standard deviation bars) over three
repetitions of an experiment.

Experiments include runs with and without E-HPC and different
resource allocation (32, 64, 128 and 256 cores). The X-axis repres-
ents the peak CPUs (n) allocated for the workflow in a particular
experiment. In nonE-HPC runs, a value n on the X-axis corresponds
to the number of CPU cores allocated during the complete lifecycle
of a workflow. In E-HPC runs, n is the maximum number of CPU
cores allocated during the duration of a workflow.

4.4.1 Montage. In this section, we evaluate the performance
and resource usage of Montage.
WorkflowRuntime. Figure 7a compares theworkflow runtime for
Montage with and without E-HPC. When running without E-HPC,
the workflow runtime does not change substantially across different
values of n and the shortest one is observed for n = 32 (single node
on Cori). For larger n, the runtime of sequence stages (2-Sequence
and 4-Sequence) increases equally or more than the runtime gains
in the parallel ones (1-Parallel and 3-Parallel). This is likely due to
the inter-stage data caching for different values of n. For instance,
if n = 32, 1-Parallel runs on a single node and all its output data
(4.5 GiB) is cached locally (and will eventually be written to the file
system). As a consequence, 2-Sequence reads its input data mainly
from memory. However, for n = 64, 1-Parallel runs across two
nodes, caching one half of its output data on each node. When 2-
Sequence starts on one of the two nodes, only half of its input data is
locally cached. The runtime of the I/O intensive stage becomes 15%
longer than for n = 32. This effect is also observed for 4-Sequence
since it is also an I/O intensive sequential stage preceded by a
parallel one (3-Parallel). However, since its input data is larger than
for 2-Sequence (38 GiB), the effect is more noticeable, e.g., runtime
of 4-Sequence from n = 32 to n = 64 increases 52%.

When run with E-HPC, Montage workflow runtime presents
a different pattern. Again, workflows running on a single node
(n = 32) present the shortest runtime because the tasks run on a
single node and in the same job allocation. For n > 32, the inter job
wait time increases the workflow runtime significantly compared
to n = 32. This is expected since for n > 32, E-HPC runs each

E-HPC: A Library for Elastic Resource Management in HPC Environments WORKS’17, November 12–17, 2017, Denver, CO, USA

0

500

1000

1500

2000

2500

NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC

32 64 128 256

W
or
kf
lo
w
	R
un

tim
e	
(s
)

Peak	CPUs	Allocated
1-Parallel 2-Sequence 3-Parallel 4-Sequence
Checkpointing 2-Queue 3-Queue 4-Queue

(a) Runtime.

0

10

20

30

40

50

60

70

80

90

NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC

32 64 128 256

Co
re
-H
ou

rs
	U
se
d	
(h
)

Peak	CPUs	Allocated

1-Parallel 2-Sequence 3-Parallel 4-Sequence Overheads

(b) Core-hours.
Figure 7: Montage workflow performance (Cori): (a) workflow runtime and (b) core-hours usage for Montage with and without E-HPC.
Montage shows shorter runtimes without E-HPC. For values of n larger than 32, E-HPC runs consume less core-hours.

0

1000

2000

3000

4000

5000

6000

NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC

32 64 128 256

W
or
kf
lo
w
	R
un

tim
e	
(s
)

Peak	CPUs	Allocated
1-Parallel 2-Sequence	(1	core) Checkpointing 2-Queue

(a) Runtime.

0

10

20

30

40

50

60

NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC

32 64 128 256

Co
re
-H
ou

rs
	U
se
d	
(h
)

Peak	CPUs	Allocated

1-Parallel 2-Sequence	(1	core) Overheads

(b) Core-hours.
Figure 8: BLAST workflow performance (Cori): (a) workflow runtime and (b) core-hours usage for BLAST with E-HPC and without E-HPC.
BLAST execution is dominated by its first parallel stage. BLAST runtimes and core-hours are similar under both approaches, with slightly
longer times and higher core-hour numbers in E-HPC.

0

500

1000

1500

2000

2500

3000

NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC

32 64 128 256

W
or
kf
lo
w
	R
un

tim
e	
(s
)

Peak	CPUs	Allocated
1-Sequence	(1	core) 2-Parallel Checkpointing 2-Queue

(a) Runtime.

0

10

20

30

40

50

60

NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC NonEHPC EHPC

32 64 128 256

Co
re
-H
ou

rs
	U
se
d	
(h
)

Peak	CPUs	Allocated
1-Sequence	(1	core) 2-Parallel Overheads

(b) Core-hours.
Figure 9: Synthetic workflow performance (Cori): (a) workflow runtime and (b) core-hours usage for the Synthetic workflow with E-HPC
and without E-HPC. Synthetic workflows show significantly shorter runtimes without E-HPC. Until 128 cores, less core-hours are allocated
under E-HPC. For higher values of n, E-HPC uses less core-hours.

section of the workflow in a separate job to adjust the resource
allocation to the desired size (Figure 5a). As n increases, the runtime
for the sequence stages does not change and parallel stages becomes
shorter, decreasing the overall runtime.

The comparison between running Montage with or without E-
HPC shows that runtime is longer with E-HPC in all cases. When
run on a single node, the 20% runtime increase is due to monitoring
overhead of DMTCP. For n > 32, the workflow runtime difference

WORKS’17, November 12–17, 2017, Denver, CO, USA W. Fox et al.

is contributed by the inter-job wait time and longer runtime of
the stages. The inter job wait time is dependent on the current
workflow of the system and out of the control of E-HPC. For most
cases, total stage runtime is ≈ 20% longer with E-HPC. As we scale
to n = 256, nonE-HPC runs can no longer benefit from inter-stage
data caching due to data being distributed across multiple node,
and hence, stage runtime overhead in E-HPC is reduced to 10% as
compared to nonE-HPC.
Workflow core-hours. Core-hours consumed by all the experi-
ments with Montage on Cori are detailed in Figure 7b. In cases
without E-HPC, larger allocations increase the core-hours con-
sumed. Without elasticity, the sequence stages consume signific-
antly more core-hours since their runtime is not reduced by the
larger resource allocation. Also, parallel stages, when scaling up
from n = 32 to n = 256, consume slightly more core-hours due to
the increasing overheads of the initial setup in Tigres for launching
the parallel tasks across multiple nodes For Montage, n = 32 (single
node on Cori), 72% of the workflow runtime is consumed by serial
stages (2-Sequence and 4-Sequence).

With E-HPC, for values of n > 32, doubling the allocated re-
sources induces small variations in consumed core hours. For ex-
ample, stepping n up from 64 to 128, increase core-hours consump-
tion by 11%. Core-hour usage increases are attributed to the natural
overhead of less than perfect parallelism in the code, and the initial
overhead of distributing the tasks through Tigres across multiple
nodes. Otherwise, with E-HPC, there is no resource wastage and
checkpointing core-hours are very small (< 1%). However, there is
a larger step between n = 32 and n = 64, with an increase of 35%
of core hours. This is due to the loss in efficiency in the sequence
stages due to lack of caching of intermediate data.

Finally, comparing runs of Montage with the two approaches, for
values n > 32 (elasticity is possible), E-HPC requires significantly
less core-hours (76% for 256 cores) than nonE-HPC due to elastic
management of resources. The core-hour results in Montage show
that with increasing parallelism, E-HPC utilizes resources more
efficiently than nonE-HPC due to diverse level of parallelism.

4.4.2 BLAST. This section focuses on evaluating the impact of
E-HPC on BLAST.
Workflow runtime. The runtime of all the experiments running
BLAST on Cori are presented in Figure 8a. When run without
E-HPC, BLAST’s runtime is dominated by the first parallel stage
(1-Parallel occupies > 99% of the total runtime in all cases). This
stage scales well over more resources and overall workflow runtime
is significantly reduced when run over more resources. For instance,
for n = 64 the runtime is less than half (53% shorter) than for n = 32.

Similar workflow runtimes are observed in BLAST when run
with E-HPC. DMTCP’s monitoring overhead is relatively small
but becomes more significant for larger values of n. e.g., DMTCP
increases BLAST’s runtime by 1% for n = 32 and 8% for n = 256.
For all values of n, checkpoint, restart, and queue times increase the
overall workflow runtime by ≈ 2 minutes, which is not significant
compared to the overall workflow runtime. In summary, BLAST
scales well as the workflow allocation is increased, and has very
little overhead when run with E-HPC.
Workflow core-hours. Core-hours consumed with BLAST (on
Cori) are detailed in Figure 8b. Similar core-hours are observed with
and without E-HPC and different values of n, e.g., the maximum

values differ less than 9% from the average. This is caused by the
domination of (1-Parallel) over the execution of the workflow that
makes other non-scaling stages irrelevant in terms of core-hours.

The comparison between n = 32 and n = 64 cases present an
unexpected result: the core-hours are reduced when parallelism is
increased. This is caused by the unexpected super-linear reduction
of runtime in that step of n observed in Figure 8a. In the next steps
of n, core-hours increase slowly from the expected imperfection of
parallelism in the code.

Comparison between using and not using E-HPC shows thatE-
HPC consumes 1.5% to 5% more core-hours with no clear correla-
tion to n. Checkpointing overhead in all cases consumes less than
0.5%. This leads to the conclusion that the additional core-hours
consumed by E-HPC are for DMTCP execution overhead.

4.4.3 Synthetic. This section describes our evaluation of the
Synthetic workflow with E-HPC.
Workflow runtime. The runtimes observed of all experiments
with Synthetic workflow are presented in Figure 9a. When run
without E-HPC, the workflow runtime becomes shorter for larger
values of n. This reduction is the result of shorter stage runtimes of
the 2-Parallel stage when more resources are available (1-Sequence
is sequential and thus its runtime is constant): 2-Parallel runtime is
reduced 40 − 49% each time n is doubled.

The Synthetic runs with E-HPC present much longer runtimes
than without E-HPC. This is due to DMTCP monitoring overhead
that slows down the execution of all stages by a 2.2− 2.4 factor. De-
tailed analysis of the workflow reveals that most of the operations
performed by the workflow were memory management (allocation
and free). These operations are heavily monitored by DTMCP that
traps all the memory management calls. The workflow runtime
evolution for larger values of n is as expected: 1-Sequence runtimes
remain constant, and 2-Parallel runtime is reduced significantly
(again 40 − 49%). Finally, E-HPC checkpoint overheads are minimal
(6 seconds for all values of n) and the queue times for the second
job is typically a few minutes.
Workflow core-hours. Core-hour consumed in all experiments
with Synthetic are detailed in Figure 9b. For nonE-HPC, a larger
resource allocation implies a significant increase in core-hours
consumed by the workflow. This increase is mainly due to the
wastage of the resources by the 1-Sequence stage.

Runs of Synthetic with E-HPC consume almost the same core-
hours for all values of n. This is caused by the constant resource
consumption of both stages in the workflow. 1-Sequence consumes
the same core hours because elasticity allows to execute 1-Sequence
over 32 cores in all cases. 2-Parallel runtime decreases proportion-
ally to the increase in assigned resources, keeping its core-hours
consumption almost unchanged.

4.5 Effect of Runtime Elasticity
Figure 10a shows the use of E-HPC for inducing elasticity in the
middle of a workflow stage (runtime elasticity), as it expands from
16 cores (one node on Gordon) into a larger set. Although E-HPC is
capable of scaling up in the middle of a workflow stage, the results
in the figure show that the total workflow runtime is affected when
using E-HPC. The sequential stages in BLAST are extremely short
in comparison to the longer parallel stage. The runtime for 16 cores
with and without E-HPC are similar because in both cases, all the

E-HPC: A Library for Elastic Resource Management in HPC Environments WORKS’17, November 12–17, 2017, Denver, CO, USA

0.00

0
29.6

0

2754

0.00

10318

0

17230

0

200

400

600

800

1000

1200

1400

1600

1800

2000

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

16 32 64 128 256

W
or
kf
lo
w
	R
un

tim
e	
(s
)

Peak	CPUs	Allocated
1-BLAST 2-BLAST-Scaled Checkpointing 2-Queue

(a) Runtime.

0

200

400

600

800

1000

1200

1400

1600

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

No
nE
HP

C

EH
PC

16 32 64 128 256

Co
re
-H
ou

rs
	U
se
d	
(h
)

Peak	CPUs	Allocated
1-BLAST 2-BLAST-Scaled Overheads

(b) Core-hours.
Figure 10: Runtime elasticity on BLAST (Gordon) vs static allocation: (a) workflow runtime and (b) core-hour usage for BLAST. The E-HPC
coordinated job starts on a single 16 core node and expands to the peak core allocation after 60 seconds of execution.

(a) Performance overhead (b) Checkpoint overhead
Figure 11: E-HPC overheads: (a) shows time required for checkpoint and restart vs. the number of processes/tasks being tracked by E-HPC,
(b) shows total storage required on filesystem for a checkpoint versus the number of processes/tasks being tracked by E-HPC.

stages use 16 cores (one node on Gordon). However, as we scale
up to 32 cores, E-HPC takes ≈ 6% more time. When using E-HPC
the first sequence stage, 1-BLAST is executed on one node and the
elasticity is induced after 60 seconds. During this time, some of the
tasks in the second stage, 2-BLAST-Scaled, which is a parallel stage,
have already started executing. The higher degree of parallelism
during the initial parallel stage and the checkpoint/restart overhead
of DMTCP, the overall runtime performance deteriorates with E-
HPC. The pattern continues for larger cores, and for up to 256 cores
(with E-HPC taking ≈ 20% more time than without E-HPC), E-HPC
runtime elasticity performs poorly compared to when executed
without E-HPC. This is a significant result, because it shows that the
time when elasticity is induced is also critical to certain workflows,
andmay result in performance degradation if the required resources
are not allocated at the right time.

4.6 E-HPC Overheads
In this section, we evaluate the different overheads in E-HPC.
Table 3 shows the runtime overhead of various workflows, with
and without the queue wait times, when running with E-HPC on
both Cori (C) and Gordon (G). As E-HPC resubmits a job while
scaling up, it incurs an additional queue wait time in addition to
the checkpoint and restart overheads of DMTCP. As can be seen
from the table, the overheads including the queue wait time are
significantly higher than excluding the wait time (for e.g., runtimes
are 86.3% longer with queue wait time vs 10.3% longer without the
queue wait time for Montage on Cori). This is because the queue

% Overhead, Wait (Without wait)
Workflow Sys. 32 64 128 256
Montage C N /A 86.1(10.3) 32.8(10.3) 42.3(11.1)
BLAST C N /A 5.7(3.9) 10.5(7.6) 18.3(13.6)
Synth C N /A 13.8(0.29) 21.4(0.36) 3.5(0.37)
BLAST G 13.11(9.3) 448(10.9) 2085(13.4) 5210(36.3)
Synth G 4.5(0.8) 4.7(1.8) 5(2.0) N /A

Table 3: E-HPC overheads including (left) and excluding system
dependent wait times (brackets). E-HPC controlled overheads vary
between 0.2% − 36%. BLAST supports higher overheads due to its
larger memory footprint and hence, larger checkpoints.

wait time dominates the overheads in these cases and is a system-
dependent variable on which neither E-HPC, nor DMTCP have any
control. On the other hand, the overheads without the queue wait
time only include DMTCP checkpoint and restart times, which has
a maximum of ≈ 36% overhead (for BLAST on 256 cores on Gordon).
BLAST is a memory-intensive application, with a large memory
footprint that generates large checkpoint images. The overheads are
smaller on Cori (≈ 13%) than on Gordon, because of the large I/O
bandwidth of the Lustre file system (700 GB/s), as compared to the
peak I/O bandwidth on Gordon (100 GB/s). For all other workflows,
the runtime overhead varies between 0.2% − 11%, when there are
no queue wait times. Hence, with current advancements in storage
system (e.g., burst buffers) and checkpoint restart systems, E-HPC
overheads can be minimized.

WORKS’17, November 12–17, 2017, Denver, CO, USA W. Fox et al.

Figure 11a) shows the overheads in E-HPC due to the checkpoint
and restart phases. Both checkpoint and restart overheads are pro-
portional to the number of workflow tasks in execution, and the
overheads increase linearly up to 150 tasks/processes. The overhead
is due to the added communication between the workflow tasks
and the DMTCP coordinator, and the I/O overhead of writing the
checkpoint image to disk.

Figure 11b) shows that the storage space overhead also increases
linearly with the increasing number of tasks. The total amount of
memory and compute requirements increase with increasing tasks,
thereby increasing the total checkpoint size. An important obser-
vation from Figure 11b is that the checkpoint size may become so
large that it can result in I/O performance bottlenecks that can sig-
nificantly affect the overall E-HPC performance. DMTCP provides
optimizations for writing checkpoint images to memory, and also
provides compressed checkpointing to minimize the memory and
storage footprint of checkpoints and restarts. These optimizations
can be used to minimize the overheads in E-HPC.

4.7 Summary
In this section, we summarize the experimental results. The work-
flow runtimes are ≈ 6%− 20% time longer in E-HPC as compared to
running the workflow without E-HPC. The runtime results for the
workflows show that the performance of workflows with E-HPC is
affected due to the checkpoint-restart overhead, queue wait time
and the underlying application characteristics (Figure 7a, Figure 7b).

E-HPC improves the core-hours used for running the workflows
by up to 76%. The core-hour results show that with increasing paral-
lelism, and longer sequential stages, E-HPC utilizes resources more
efficiently than its counterpart by allocating only as many resources
as needed for a stage in the workflow (Figure 8a, Figure 8b).

The runtime overheads in E-HPC vary between 0.2%−36%, when
excluding the highly variable queue wait times. Further evaluation
shows that the overheads are solely due to the underlying file
system, and DMTCP (checkpoint/restart library) (Table 3).
5 RELATEDWORK
Elasticity. In cloud computing, schedulers [35], [2], [1], satisfy
user performance demands by dynamically altering the resource
allocation to jobs [17]. Also, cloud workflow managers [34], [15],
perform fine-grained allocation for each workflow stage. In all cases,
dynamic resource allocation presents a key challenge of resource
liberation, i.e., deallocation of occupied resources to enlarge alloca-
tions when the required amount is not free. In cloud environments,
resource liberation is achieved by applying workload consolida-
tion [32], workload preemption [35], or resource oversubscription
[33]. These techniques imply a potential performance reduction or
cancellation of some applications to benefit others [30].

In HPC, individual application performance is subordinated to
overall objectives such us high utilization and performance effi-
ciency [20]. Elasticity in the HPC space has shown progress through
the creation of applications built for malleability [28], [18] or mold-
ability [7], [14]. Others methods include elastic job bundling, where
numerous smaller jobs are submitted in order to deploy a large
set of nodes more quickly [16]. Finally, some modern schedulers
support special jobs which aggregate resources to a running job
upon start [39]. However, effectiveness of these techniques depends
on the synchronization between the start of different jobs, which

is hard to accomplish. E-HPC provides elasticity in HPC without
the caveats of the techniques described in this section. E-HPC does
not significantly impact the overall system performance since pree-
mption is not required, and it enables the automatic restart of jobs
that run over their time limit.
Resource management in scientific workflows. Systems like
Pegasus [4], Askalon [6], Koala [19], VGRaDS [25], or DAGMan
[3] are used to run scientific workflows. They provide functions
such as workflow mapping (i.e., task grouping for efficient execu-
tion), monitoring, fault tolerance, execution, and meta-scheduling.
These systems usually schedule workflow tasks across different sites
and rely on the local scheduler for fine-grained resource manage-
ment. However, local HPC scheduler rarely incorporate workflow
aware mechanisms [27] and workflow tasks might be scheduled
inefficiently.E-HPC does not provide the high level functions of
other workflow systems. However, it enables fine grained resource
allocation to workflows by providing elastic execution of tasks.
Workflow turnaround time reduction. Previous work studied
methods to reduce initial and intermediate job wait times that elong-
ate turnaround time in workflows. For example, Mesos [11], Omega
[29], Koala [18], or A2L2 [28] describe schedulers that minimize
intermediate wait times by managing workflows separately from
the rest of the workload. Approaches like WoAS [27], bring work-
flow aware scheduling to classical HPC schedulers by extending
the queue model. Other systems propose job bundling [16] and task
clustering [31] to efficiently execute workflows with multiple tasks.
Workflow runtime in E-HPC can be increased by intermediate job
wait times. This effect is eased by submitting jobs before their pre-
cursors are completed (i.e., fast mode). However, effective use of
this technique requires further investigation in combination with
queue wait time prediction methods.
6 CONCLUSIONS AND FUTUREWORK
In this paper, we present the design, implementation and evalu-
ation of E-HPC, a flexible elastic framework that provides increased
efficiency of resource utilization, failure recovery, elasticity, and
faster execution times. The overheads of E-HPC vary based on the
characteristics of the application (e.g., amount of I/O), resource
configuration and run-time characteristics (e.g., queue wait time).
The overheads are from checkpoint and restart, while providing
significant benefits in dynamic elastic resource management. E-
HPC is designed to work independently as well as with existing
software ecosystems. E-HPC provides an effective library for the
fine tuned control of resources in HPC environment, where before
now, real time control was difficult, if not impossible. E-HPC is
the foundational tool needed to address the resource management
needs of next-generation real-time and streaming workflows.
7 ACKNOWLEDGMENTS
This material is based on work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research (ASCR) and resources used at the National Energy
Research Scientific Computing Center, a DOE Office of Science
User Facility, supported by the Office of Science of the U.S. Depart-
ment of Energy, both under Contract No. DE-AC02-05CH11231.
The authors also thank the Brazil National Council for Scientific
and Technological Development (CNPq) for their support of author
Abel Souza’s time under project No. 207555/2014-1.

E-HPC: A Library for Elastic Resource Management in HPC Environments WORKS’17, November 12–17, 2017, Denver, CO, USA

REFERENCES
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H

Katz, Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica,
et al. 2009. Above the clouds: A berkeley view of cloud computing. Technical Report.
Technical Report UCB/EECS-2009-28, EECS Department, University of California,
Berkeley.

[2] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, omega, and kubernetes. Commun. ACM 59, 5 (2016), 50–57.

[3] Peter Couvares, Tevfik Kosar, Alain Roy, Jeff Weber, and Kent Wenger. 2007.
Workflow management in condor. Workflows for e-Science (2007), 357–375.

[4] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal
Patil, Mei-Hui Su, Karan Vahi, andMiron Livny. 2004. Pegasus: Mapping scientific
workflows onto the grid. In Grid Computing. Springer, 11–20.

[5] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, et al.
2005. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming 13, 3 (2005), 219–237.

[6] T. Fahringer, R. Prodan, R.Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J.
Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek. 2007. ASKALON:
A Development and Grid Computing Environment for Scientific Workflows. In
Workflows for e-Science, I. Taylor et al. (Eds.). Springer-Verlag, 450–471.

[7] Dror G Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C Sevcik, and
Parkson Wong. 1997. Theory and practice in parallel job scheduling. InWorkshop
on Job Scheduling Strategies for Parallel Processing. Springer, 1–34.

[8] Guilherme Galante and Luis Carlos E de Bona. 2012. A survey on cloud computing
elasticity. In Utility and Cloud Computing (UCC), 2012 IEEE Fifth International
Conference on. IEEE, 263–270.

[9] Duane A. Gilmour, James P. Hanna, and Gary Blank. 2004. Dynamic Resource
Allocation in an HPC Environment. In Proceedings of the 2004 Users Group Confer-
ence (DOD UGC 2004). IEEE Computer Society, Washington, DC, USA, 260–265.
https://doi.org/10.1109/DOD_UGC.2004.11

[10] Valeria Hendrix, James Fox, Devarshi Ghoshal, and Lavanya Ramakrishnan.
2016. Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems.
Cluster, Cloud, and Grid Computing (CCGrid), 2016 16th IEEE ACM International
Symposium (May 2016).

[11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.. In NSDI, Vol. 11. 22–22.

[12] Joseph C Jacob, Daniel S Katz, G Bruce Berriman, John C Good, Anastasia Laity,
Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su, Thomas Prince, et al.
2009. Montage: a grid portal and software toolkit for science-grade astronomical
image mosaicking. International Journal of Computational Science and Engineering
4, 2 (2009), 73–87.

[13] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi, Gaurang Mehta,
and Karan Vahi. 2013. Characterizing and profiling scientific workflows. Future
Generation Computer Systems 29, 3 (2013), 682–692.

[14] Cristian Klein and Christian Perez. 2011. An rms architecture for efficiently
supporting complex-moldable applications. In High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference on. IEEE, 211–
220.

[15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 239–250.

[16] Feng Liu and Jon B. Weissman. 2015. Elastic Job Bundling: An Adaptive Resource
Request Strategy for Large-scale Parallel Applications. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’15). ACM, New York, NY, USA, Article 33, 12 pages. https:
//doi.org/10.1145/2807591.2807610

[17] Peter Mell, Tim Grance, et al. 2011. The NIST definition of cloud computing.
(2011).

[18] Hashim Mohamed and Dick Epema. 2008. KOALA: a co-allocating grid scheduler.
Concurrency and Computation: Practice and Experience 20, 16 (2008), 1851–1876.

[19] H. H. Mohamed and D. H. J. Epema. 2005. Experiences with the KOALA co-
allocating scheduler in multiclusters. In Proceedings of the International Sym-
posium on Cluster Computing and the Grid (CCGRID2005). IEEE Computer Society,
784–791.

[20] A. W. Mu’alem and D. G. Feitelson. 2001. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE
Transactions on Parallel and Distributed Systems 12, 6 (Jun 2001), 529–543. https:
//doi.org/10.1109/71.932708

[21] NERSC Cori 2016. http://www.nersc.gov/users/computational-systems/cori/
configuration/. (2016).

[22] Pegasus University of Southern California Information Sciences Institute. 2015.
Pegasus Montage Tutorial. https://confluence.pegasus.isi.edu/display/pegasus/
Montage. (2015).

[23] Fawaz Paraiso, Philippe Merle, and Lionel Seinturier. 2016. soCloud: a service-
oriented component-based PaaS for managing portability, provisioning, elasticity,
and high availability across multiple clouds. Computing 98, 5 (2016), 539–565.

[24] William D Pence, L Chiappetti, Clive G Page, RA Shaw, and E Stobie. 2010.
Definition of the flexible image transport system (fits), version 3.0. Astronomy &
Astrophysics 524 (2010), A42.

[25] Lavanya Ramakrishnan, Charles Koelbel, Yang-Suk Kee, Rich Wolski, Daniel
Nurmi, Dennis Gannon, Graziano Obertelli, Asim YarKhan, Anirban Mandal,
T Mark Huang, et al. 2009. VGrADS: enabling e-Science workflows on grids and
clouds with fault tolerance. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. IEEE, 1–12.

[26] Michael Rieker, Jason Ansel, and Gene Cooperman. 2006. Transparent User-
Level Checkpointing for the Native POSIX Thread Library for Linux. In The 2006
International Conference on Parallel and Distributed Processing Techniques and
Applications. Las Vegas, NV, 492–498.

[27] Gonzalo P Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya Ramakrishnan.
2017. Enabling Workflow-Aware Scheduling on HPC Systems. In Proceedings of
the 26th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 3–14.

[28] Gonzalo Pedro Rodrigo Álvarez, Per-Olov Östberg, Erik Elmroth, and Lavanya
Ramakrishnan. 2015. A2l2: An application aware flexible hpc scheduling model
for low-latency allocation. In Proceedings of the 8th International Workshop on
Virtualization Technologies in Distributed Computing. ACM, 11–19.

[29] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: flexible, scalable schedulers for large compute clusters. In Proceed-
ings of the 8th ACM European Conference on Computer Systems. ACM, 351–364.

[30] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. 2011. A
cost-aware elasticity provisioning system for the cloud. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on. IEEE, 559–570.

[31] Gurmeet Singh, Mei-Hui Su, Karan Vahi, Ewa Deelman, Bruce Berriman, John
Good, Daniel S Katz, and Gaurang Mehta. 2008. Workflow task clustering for
best effort systems with Pegasus. In Proceedings of the 15th ACM Mardi Gras
conference: From lightweight mash-ups to lambda grids: Understanding the spec-
trum of distributed computing requirements, applications, tools, infrastructures,
interoperability, and the incremental adoption of key capabilities. ACM, 9.

[32] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. 2008. Energy aware consol-
idation for cloud computing. In Proceedings of the 2008 conference on Power aware
computing and systems, Vol. 10. San Diego, California, 1–5.

[33] Luis Tomás and Johan Tordsson. 2013. Improving cloud infrastructure utilization
through overbooking. In Proceedings of the 2013 ACM Cloud and Autonomic
Computing conference. ACM, 5.

[34] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. 2013. Apache hadoop yarn: Yet another resource negotiator. In Pro-
ceedings of the 4th annual Symposium on Cloud Computing. ACM, 5.

[35] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems. ACM,
18.

[36] Michael Wilde, Mihael Hategan, Justin M Wozniak, Ben Clifford, Daniel S Katz,
and Ian Foster. 2011. Swift: A language for distributed parallel scripting. Parallel
Comput. 37, 9 (2011).

[37] XSEDE Gordon 2015. http://www.sdsc.edu/support/user_guides/gordon.html.
(2015).

[38] Jia Yu and Rajkumar Buyya. 2005. A taxonomy of workflowmanagement systems
for grid computing. Journal of Grid Computing 3, 3-4 (2005), 171–200.

[39] Xiaobing Zhou, Hao Chen, Ke Wang, Michael Lang, and Ioan Raicu. 2013. Ex-
ploring distributed resource allocation techniques in the slurm job management
system. Illinois Institute of Technology, Department of Computer Science, Technical
Report (2013).

https://doi.org/10.1109/DOD_UGC.2004.11
https://doi.org/10.1145/2807591.2807610
https://doi.org/10.1145/2807591.2807610
https://doi.org/10.1109/71.932708
https://doi.org/10.1109/71.932708
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/cori/configuration/
https://confluence.pegasus.isi.edu/display/pegasus/Montage
https://confluence.pegasus.isi.edu/display/pegasus/Montage
http://www.sdsc.edu/support/user_guides/gordon.html

	Abstract
	1 Introduction
	2 Background
	2.1 Scientific Workflow Execution
	2.2 Elasticity and recovery use cases
	2.3 Tigres Workflow Library
	2.4 DMTCP

	3 Design and Implementation
	3.1 User Interface
	3.2 Workflow States
	3.3 E-HPC Coordinator
	3.4 E-HPC Tracker
	3.5 E-HPC API
	3.6 Minimizing Queue Wait Time
	3.7 Workflow Plug-ins

	4 Evaluation
	4.1 Systems
	4.2 Workflows
	4.3 E-HPC Elasticity
	4.4 Effect of Stage Elasticity
	4.5 Effect of Runtime Elasticity
	4.6 E-HPC Overheads
	4.7 Summary

	5 Related Work
	6 Conclusions and Future Work
	7 Acknowledgments
	References

