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ABSTRACT
There is a widespread agreement that society must swiftly decrease
and ultimately eliminate its carbon emissions to mitigate climate
change, a profound threat to the Earth’s ecosystem and humanity’s
existence. Over the past decades, previous research has primarily
motivated individual consumers to lower their energy consumption,
with several works reporting financial incentives as the key reason
for participation. Contrary to intuition, the core issue is not the
escalation of energy consumption itself, but the carbon footprint re-
sulting from that energy usage and its environmental consequences.
As such, recent initiatives aimed at decarbonization in fields such as
computing, construction, and transportation leverage the flexibility
of energy demand to effectively diminish its associated carbon foot-
print. In addition, consumer habits and routine changes have been
argued to significantly achieve large energy savings. However, most
approaches mainly use financial incentives, which alone cannot be
employed as the primary strategy with results pointing to individ-
uals reverting habits due to low rewards and considerable impacts
into their routines. In aworldwhere automation spans various appli-
cations, Artificial Intelligence (AI) can potentially assist consumers
in reshaping daily behavior to lower carbon footprint, all while
mitigating inconvenient factors associated with routine changes.
In this paper, we propose a vision of using the modeling of sustain-
ability efforts with human-in-the-loop considerations. We begin
with understanding what incentivizes behavioral change among
consumers. Then, we describe, illustrate, and list the challenges
in using automation technologies with recommendation systems
to sustain consumer engagement in day-to-day decarbonization
efforts.

1 INTRODUCTION
The growing concern about the climate impact of human activ-
ities has highlighted the focus on the Greenhouse gases (GHG)
footprint linked to energy consumption across different sectors of
society, in which carbon dioxide emissions are the main contributor.
Hence, a significant concern pertains to the tangible manifestation
of energy generation and its carbon footprint. While adopting new
sustainable technologies is promising, the success of reducing car-
bon emissions will largely depend on user willingness to adapt their
behavior, requiring changing habits and maintaining them as a rou-
tine to align with periods when renewable energy is abundant. The
expectation for everyday users to comprehend these consequences,
analyze and consequently alter their daily behaviors to collectively
reduce society’s carbon footprint has emerged as a pivotal solution,
both from a political and environmental standpoints.

In the context of climate change and sustainability, the main
goal extends beyond merely reducing energy demand — it also

Figure 1: North American grid overview for 2022 – Color-coded
representation of the average carbon footprint (in g·CO2Eq per
kWh), with greener colors representing cleaner electricity. The
low number of green regions indicate heavy reliance on fossil-
fuel-based energy generation nationwide.

encompasses diminishing the carbon footprint associated with ev-
eryday activities. Although there have been decades of research
dedicated to enhancing the energy efficiency of societal activities
in areas such as transportation [27], dwelling acclimatization [28],
agriculture, just to name a few, there has been relatively less em-
phasis on improving carbon efficiency. Carbon efficiency describes
the effectiveness of an activity, process, system, or technology to
minimize or reduce the overall carbon footprint associated with its
operationalization. This definition highlights that, contrary to com-
mon perception, the primary issue is not the exponential increase
in energy demand itself; instead, it is the resulting carbon footprint
associated with such demand and its environmental repercussions.
The difficulties and overlooks by technology developers and indus-
try players with carbon efficiency are primarily driven by the need
to closely integrate and understand frequently opaque energy sys-
tems. Nevertheless, optimizing carbon efficiency is imperative for
satisfying society’s growing energy demands sustainably without
relying on unattainable increases in energy efficiency.

While studies have reported various factors impacting carbon
efficiency and vary depending on the specific area of study [1], the
implications of these findings underlined growing societal aware-
ness of the existing impact of climate change and its severe conse-
quences. Much research has argued that the effects of individual
behavioral changes hold significant promise in improving climate
change. Strategies to encourage everyday consumers to change
their behavior, however, too often relied on extrinsic motivation
such as financial rewards, lowering electricity bills, discounts, and
penalties. Despite attractive monetary incentives, these strategies
are less effective as long-term solutions due to users’ habits and pref-
erences [30]. More often than not, the behavioral change expected



from the user raises impractical inconveniences, consequently re-
sulting in users reverting to their energy-inefficient practices. Social
science research has argued that behavioral change strategies must
appeal to intrinsic motivation to sustain long-term actions. They
must be driven by one’s autonomy, leading to personal satisfaction.
Some works have reported that strategies appealing to personal
health and comfort needs play critical roles in nudging and retain-
ing pro-environmental behavior [8, 12].

In addressing these issues, research in smart homes and the In-
ternet of Things (IoT) has introduced home appliances with the
ability to autonomously regulate energy consumption while al-
lowing users to monitor their energy consumption, automate the
operation of specific devices during periods of lower electricity
costs, and deactivate unused appliances [2]. While effective in serv-
ing their purposes, these efforts have primarily focused on energy
utility and less on carbon savings. Further, the ability to monitor
energy usage can be expanded as a promising modality to raise
awareness of the impacts of changing everyday behavior on carbon
emission through a broader spectrum of daily actions. For exam-
ple, it can range from prompting users to dim their home lights to
lowering their streaming resolution to reduce their digital carbon
footprint.

Our vision is to address decarbonization with human-in-the-
loop consideration. We argue that changes in user behavior with
respect to reducing their carbon footprint can be properly miti-
gated through informative, automated systems without imposing
high burdens on the user. Accordingly, this paper proposes a user-
centered decarbonizationmanagement framework that pairs energy
system optimization models with an AI-augmented user behavioral
intervention mechanism. By collectively and intelligently optimiz-
ing for the user, our work aims to reduce burdens associated with
participation, and to proactively engage in pro-environmental be-
havior yet assist users with making carbon-efficiency choices while
accounting for their habits and preferences. The third component
of raising decarbonization awareness is through an interactive vi-
sualization that can aptly identify the challenges and opportunities
in formulating carbon-efficient policies targeting various settings
and user groups.

Our vision for a user-centered carbon management system pro-
posed in this paper aims to contribute to the ongoing discussions
about policies and mechanisms that align macro-user behaviors
and their preferences according to the availability of lower carbon
periods.

2 BACKGROUND
The groundwork for this research hinges on advancing the grid car-
bon intensity model and methods of incentivizing users to change
their behavior. In this section, we provide an overview of the electric
grid’s carbon intensity, different types of carbon intensity signals
and how these are used to do accounting, and used in carbon-aware
several applications.

2.1 Energy Information Services
The electric grid combines energy sources to fulfill the local electric-
ity demand. These sources encompass fossil fuel-based generators,
coal or natural gas, renewable sources such as hydro, wind, and

solar, as well as non-carbon sources like nuclear power. Due to
fluctuations in electricity demand over the day, following the diur-
nal cycle, the composition of generation sources and their relative
contributions vary over time. It is important to note that renewable
sources such as wind and solar are intermittent, adding a temporal
layer of complexity to the generation mix. The carbon intensity
(CI) of the electricity supply, quantified in grams of𝐶𝑂2 equivalent
per watt or g·CO2eq/kWh, denotes the average weighted carbon
emissions associated with the mix of generation sources in use
at any given moment. This average intensity is influenced by the
proportion of each source in the generation mix, with fossil-based
sources factoring high footprint weights and renewable sources
factoring low or near-zero carbon impacts.

The recent emergence of carbon information services [22, 29] has
marked a significant development in environmental awareness and
sustainability. These services offer insights by providing real-time
data on the carbon intensity of electricity generation, empower-
ing individuals and organizations to make informed choices about
when to consume energy and enabling them to control their carbon
footprint. It also contributes to a broader global effort to transition
toward cleaner and more sustainable energy sources, highlighting
the growing importance of technology and user-driven solutions in
addressing environmental challenges. For instance, Figure 1 depicts
our web-based visualization tool with the overall carbon inten-
sity of grid electricity throughout 2022 across various geographic
regions in North America [21]. Notably, the map highlights substan-
tial spatiotemporal disparities, with the carbon intensity exhibiting
significant differences across regions and an even greater contrast
to Ontario, which has a large renewable penetration, over the same
period. In North America alone, these disparities illustrate signifi-
cant variations in the carbon footprint of energy-intensive activities.
They can be further broken down by periods of high or low car-
bon intensity. More importantly, the low number of green regions
indicates a heavy reliance on fossil-fuel-based energy generation
nationwide.

2.2 Mitigating Carbon Emissions
The task of designing energy-efficient activities is intuitively
straightforward, involving the optimization of individual compo-
nents to minimize their energy consumption. Additionally, they
can be achieved simply by using less energy-intensive alternatives.
In contrast to energy-efficiency solutions that specifically aim to
reduce energy usage, designing carbon-efficient solutions is more
intricate, necessitating a broader perspective about how and when
to use and create energy demand. It requires considering the local
energy system and grid, the energy source, and the characteris-
tics of the energy used, which largely depend on temporal and
geographical aspects, and the kinds of user activities.

Most modern products and services are linked to energy gen-
eration. Even when considering sectors such as transportation,
agriculture, and construction, a significant portion of their 𝐶𝑂2
emissions results from the combustion of fuels. From an environ-
mental standpoint, electrification projects can only realize their full
potential when the energy fueling these initiatives is environmen-
tally friendly. For instance, the success of Electric Vehicles (EVs)
surpassing that of internal-combustion engine vehicles becomes
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less relevant if, ultimately, these EVs are charged with energy de-
rived from fossil-fuel-based power plants. Similarly, this reasoning
can be extended to apply to all electrification and digitalization
projects that have been recently announced, whereas major indus-
tries have committed to reducing their carbon emissions, primarily
by improving energy efficiency and by offsetting their footprint
through power purchase agreements. Nevertheless, these offsets
are considered independent of location when factoring in carbon
emissions, significantly constraining their actual advantages.

2.3 Incentivizing Behavioral Change
Demand Response: Various research underscore the potential
for modifying household consumption behavior through improved
accessibility of energy reports. By and large, demand-response
programs promote behavioral change through price-based energy
usage, where consumers pay different prices at varying peak loads
or receive some financial discounts to retrofit their homes with rec-
ommended green energy practices. A comparison of monetary pay-
ments, energy information, and daily feedback in student housing
complexes revealed that monetary incentives resulted in immediate
and substantial reductions in consumption across all units, even
when the payment amounts is significantly reduced [14]. While the
success of these programs was theorized to reduce peak demand
by up to 180 megawatts (i.e., equivalent to 85.8 tons of CO2Eq),
energy saving from local programs only led to 0.1% of all con-
servation efforts [24]. Moreover, multiple research studies have
concluded that these systems exert a more pronounced influence
on energy awareness than on actual conservation behaviors, ir-
respective of whether they are implemented in high-income or
low-income households [2, 4]. When aiming for enhanced carbon-
efficient performance, AI and autonomous decision making systems
have the potential to improve user consciouness in relation to their
energy consumption. Today, feedback has evolved beyond simple
indicators to encompass smart Internet-of-Things (IoT) devices and
gamification techniques. The limitations from these approaches
lie on the often requirements of active user participation and en-
gagement [6]. By integrating real-time data from IoT devices with
AI-driven recommendations and autonomous decision making sys-
tems, users can receive tailored insights and actionable suggestions,
empowering them to reduce their carbon footprint while maintain-
ing convenience and comfort in their daily routines [6].

Consumer Behavior, A Challenge: A substantial body of work
offering psychological and social perspectives emphasized that
monetary benefits alone are insufficient for behavioral change [9].
Where the intention is to motivate consumers to act, financial incen-
tive is a common reason for initial participation. However, retaining
this behavioral change in real-world practices is significantly influ-
enced by personal habits and routines [9, 31, 32]. Much research has
argued the lack of generality in retaining this behavior is consistent
with the Theory of Planned Behavior [3, 9, 11, 25], whereby an inten-
tion is influenced by one’s attitude, subjective norm, and perceived
behavioral control. Further, moral obligation describing the sense
of responsibility for climate change is suggested to strengthen such
intentions [10, 13]. Other works have also reported that personal
health and comfort needs factors play critical roles in nudging and
retaining pro-environmental behavior [8, 12]. Additionally, several

new IoT based devices with AI capabilities have been offered to the
consumer based markets. As an example, Apple has introduced a
’Grid Forecast’ section within the Home app for their iOS17 [20].
This feature leverages users’ location to inform them about periods
when clean energy is readily accessible, enabling them to make
more conscious decisions about their energy usage. However, users
are still required to proactively review forecasts, and there are no
interfaces in place to facilitate automated decision-making.

Digital Behavioral Change: As the digitization of society moves
at an increasing pace, in this decade, we will see cloud datacenters
handling yottabyte (∼1 trillion-terabytes) amounts of data. From
smart sensors used in households to large turbines in remote areas,
millions of devices are now connected to data centers through IoT.
Moreover, the recent advancements in AI, particularly within the
realm of deep learning, have ushered in a new era of applications,
including for IoT-connected devices such as smart appliances. These
various aspects of digitization have created an extraordinary op-
portunity to tackle the ongoing limitations of smart household and
building appliances. By learning about the users who use these digi-
tizations in their daily lives, coupled with the expanding adoption of
information technologies, electricity pricing dynamics, and various
other demand-driven factors, AI can be used to assist with behav-
ioral change that takes a user-centric stand in reaching societal
sustainability goals.

2.4 Summary and Research Gap
As the consensus on climate change and growing worldwide ef-
forts to reduce carbon emissions solidify, residential buildings are
increasingly adopting energy-efficient measures. Advancing tech-
nologies of smart meters, controllers, and appliances promise to
deliver energy efficiency while providing more comfortable, con-
venient, and healthier living environments. Paradoxically, in some
instances, these measurements may undermine their very energy
reduction goals [2, 23]. As such, the overall associated GHG emis-
sions in U.S. households have not seen a decline [19], while Canada
reportedly needs to accelerate carbon reduction to reach its fu-
ture goals [15, 26]. The demand for solutions must now extend
beyond mere introduction and immediate impact: it necessitates
establishing sustained, global-scale approaches. One crucial chal-
lenge lies in not only developing models that can adapt to individual
user preferences but also in imbuing these models with the intelli-
gence to effectively promote meaningful behavioral change, while
minimizing user burden. In this paper, we propose that despite
the possibility of these technologies inadvertently raising energy
consumption [2], they can also serve as tools for establishing user-
centric carbon-aware mechanisms that can empower individuals to
actively manage their carbon footprint while mitigating the adverse
effects that might otherwise restrict their effectiveness.

3 TOWARD AI-ASSISTED DECARBONIZATION
This section outlines the framework encompassing our vision, along
with the key components required for the effectiveness of its user-
centric, carbon-awareness approach.
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Figure 2: A three part module driving a user-centered decar-
bonization management system – We extend the rich body
of work established in (1) to develop an AI-augmented user
behavioral intervention mechanism (2). Eenergy, carbon, and
user data and predictions serve as input for our visualization,
purposed to raise decarbonization awareness (3).

3.1 User-Centered Management System
Figure 2 depicts a three-part component to establish a user-centric
cyber-physical system (CPS) and decarbonization management
environment. We discuss a set of key design modules that can aid
in bridging system optimization modeling with human factors to
enable intelligent behavioral change for consumers as follows:

Energy System Optimization Modeling: There is a widespread
research in the substantial energy-saving potential of household
and buildings through modeling [17]. Energy systems engineer-
ing offers a systematic and scientific methodology for modeling
pragmatic, integrated solutions to intricate energy challenges [5, 7].
Consequently, the initial module (1) illustrated in Figure 1 repre-
sents the component responsible for modeling the energy profiles
of smart appliances and the data from the smart grid. Utilizing vari-
ous approaches, this module employs data engineering to combine
this information, resulting in a range of optimal and near-optimal
energy profile settings that household appliances can set. Addition-
ally, it possesses the capability to generate What-If scenarios [16],
which are subsequently integrated into the AI-augmented User
Behavioral Intervention (2).

AI-augmented User Behavioral Intervention: This module
combines two key optimized settings output by the Optimization
Module (1), with the user profile and the data pertaining their pref-
erences. This module can be supplied with data gathered from
different representative surveys [18] and scatered from public re-
ports. Post-processing can derive typical user energy consumption
behaviors and serve as a resource for estimating users’ willingness

134 gCO2Eq/kWh EcoLaundry
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Cycle: Regular
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Figure 3: The EcoLaundry app provides users with recommen-
dations for scheduling their laundry loads based on carbon
footprint (in g·CO2Eq). Users can choose to run their load dur-
ing low-carbon periods (green), opt for a low-intensity setting
with cold water that reduces energy consumption (yellow),
or freely select the highest-intensity profile without energy-
saving constraints (red).

to reduce their footprint, besides suggesting incentives to encour-
age eco-friendly habits. Furthermore, it enables stakeholders in
Cyber-Physical Systems to conduct quantitative analyses, exam-
ining factors that influence and to what extent users are engaged
in reducing their footprint. Additionally, the application of clus-
tering algorithms can unveil distinct profile patterns. For instance,
certain user groups characterized by specific socioeconomic and
demographic profiles can exhibit a greater propensity for adopting
carbon-friendly practices.

Analytics and Visualization: This third component provides
users and stakeholders with a clear and concise overview of the
effects of their carbon footprint, segmented by user profile (e.g.,
age, demographics) and energy usage temporal patterns. It also ag-
gregates user-provided feedback in order to dynamically adapt and
create specialized recommendations as to how suggestions are pro-
vided. By integrating various data sources accumulated through the
previous modules, the dashboard can provide actionable insights to
support raising societal awareness and behavioral change, all while
mitigating user inconvenience. Data sources include aggregates of
users’ behavioral preferences and routines, and energy usage for
daily activities, enabling the visualization of carbon data, demo-
graphics, and energy consumption habits by region and states and
by activities. Figure 5 presents our first version of this visualization
dashboard through our web tool. To elevate our geospatial data
representation, we integrated the Leaflet JavaScript library into our
framework.

3.2 Design Objectives
Our user-centric system must simultaneously satisfy the goals of
digital systems, while reducing carbon emissions (as a result of) and
promoting long-term behavior change. Fulfilling these objectives
necessitates primarily three characteristics1:

1Inspired by Onlign OS [33]
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Figure 4: The EcoWatch app assists users in scheduling dish-
washing, with carbon intensity forecasts (left), and historical
data visualization (right) to enhance user awareness about
daily temporal patterns.

Encourage meaningful user actions: Instilling meaningful be-
haviors among consumers will require educating everyday users
on the subject and simplifying carbon footprint assessment. Our
work requires integrating interfaces that can prompt users of pro-
jected carbon savings and the extent to which their choices can
save the environment. Figure 3 illustrates how choices on device
usage based on carbon-efficiency measures can be simplified to
better guide users in making their decisions. In the case of utilizing
a laundry machine, the selection of water temperature and time of
use translate to how much carbon a user can potentially save.

Assist in Scheduling Based on Carbon Footprint: Figure 4
illustrates the EcoWatch, an application similar to how weather
forecasts influence daily plans but where users can visualize carbon
intensity forecasts. This app enable users to benefit from scheduling
activities based on carbon intensity through forecast integration
to automate smart appliances. By understanding the amount of
energy needed to execute or participate in an activity e.g., light
dish washing cycles, users can easily take informed decisions when
planning their tasks accordingly to low carbon periods, making it
convenient and engaging. In situations where users have already
initiated energy-intensive activities during high-carbon periods,
recommendation systems that can suggest lower-energy alterna-
tives can be helpful. The goal is to provide readily available, less
carbon-intensive options, even if they require slight adjustments.
While current solutions such as the Apple Watch only leverage fore-
casts [20], incorporating historical data visualization could enhance
user awareness temporal patterns.

Globally-accessible consolidated carbon data: It is essential to
offer users systematic and meaningful feedback on their behavior
changes and impacts to evoke intrinsic motivation and reinforce
carbon awareness. Unfortunately, however, one’s carbon savings
is not bounded by borders. Figure 5 shows our visualization dash-
board aims to consolidate the results of carbon emissions from
digital device usage, with options to segment carbon savings by
demographic and socioeconomic makeup. The ability to access
carbon data at this scale can define clear standards of conduct for
digital device use, facilitate community outreach in less engaging
groups, and drive for policy change. We emphasize the significance

Figure 5: Access to carbon intensity information by user pro-
files and device usage via our visualization dashboard. This
visualization tool serves as a valuable resource for policy-
makers and researchers, enabling them to visualize trends in
footprint by population demographics and geographic regions.

of integrating analytical forecasts for socio-technical advancements
in order to understand R&D for energy-related decision-making
processes. Our vision incorporates various modules to enhance
comprehension and facilitate the development of refined protocols,
ultimately resulting in more accurate and adaptive recommenda-
tions regarding the footprint outcomes in household and building
automation.

4 IMPLICATIONS AND CHALLENGES
The critical drivers, beyond reducing energy are sustainability and
reducing carbon footprints. Despite decades of continuous efforts
(primarily in reducing energy), reports of short-term changes in
user behavior present a significant challenge. Reinforcing con-
clusions from prior studies, the extrinsic motivation of offering
monetary incentives, such as electricity bill savings, has proven
insufficient. They yielded short-term results, permitting users to
revert to previous habits over time. To nurture decarbonization
efforts, the strategy to motivate change among consumers must
take on a different front – What constitutes meaning and long-term
behavioral change among everyday users? The prevalence of intelli-
gent modeling techniques and IoT devices can converge to support
context-aware decarbonization strategies in virtually all digital sys-
tems today and assist users in making pro-environment decisions
and maintaining such habits. The key to our research is evaluat-
ing whether AI-augmented recommendations can, in fact, foster
long-term behavior changes without the prior setbacks observed in
other work. The challenge lies in minimizing user inconveniences
while ensuring participation is passively but intrinsically motivated
(i.e., without requiring active user actions). Herein lies two main
challenges:

Information perception translating carbon emissions to GHG
reduction: Motivating users to act will require module #2 to ex-
plain and help users grasp the true effects of changing their be-
havior on GHG. As exemplified in Figure 3, our work requires
experimenting with UI designs that effectively convey key carbon
saving metrics for the decision a user makes.
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Standardization of digital applications to provide flexibility
in user control: Our system presumes that digital applications
will shortly present users with greener options to alter their
behaviors on device usage. An example is Apple, which recently
rolled out ’Grid Forecast’ features to inform users of their
availability to ’clean’ energy [20]. Everyday home appliances that
contribute high energy usage can similarly provide users with
timed options during low carbon intensity periods.

Aside from advancing carbon and energy reporting mechanisms
and software tools to effectively reduce greenhouse gas (GHG),
research in this field must scrutinize the belief that digital solutions
and technological management can make up practical strategies to
influence users’ willingness to act on climate change. To this end,
our proposal to nudge users as active participants of decarboniza-
tion will delve into these tangible sociotechnical aspects.
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